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4,5B PARAMETERIZATION OF FRESNEL RETURNS
J. Rottger

EISCAT Scientific Association
P.0. Box 705
5-98127 Kiruna, Sweden

It appears appropriate to use the intensity correlation function p(1) to
investigate variations of a reflected signal component, Crz, and a scattered
signal component, Csz, because it is determined by the relative motions, i.e.,
fluctuations of irregularities or structural changes.

An example of a correlation fumction p(7) is shown in Figure 1. It can be
separated into three parts. (1) A very fast drop between zero and the
neighboring lag which is due to uncorrelated noise. {2) A smooth decrease at
small lags up to a few seconds which is due to scattering. This decrease can be
approximated by a parabola (equation (1)). (3) A rather slow fadeout which is
due to Fresnel reflection and very gradually approaches zero correlation for
longer lags.

The noise contribution (part (1)) has to be eliminated by normalizing the
correlation function by means of the zero-lag value p' which follows from a
parabolic approximation. As signal intensity variations are directly conmected
to turbulent variations in a scattering medium or the changes of a reflecting
discontinuity, we can evaluate parts (2) and (3) of the normalized correlation
functions in terms of characteristic structure parameters (e.g., FROST and
BITTE, 1977): ‘

(1) The microscale correlation time is defined as

o =[o12%] 172 )
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The value of 1, is given by the interception of the p = 0 axis by the parabolic
curve fitted through p(r) at 0 T << T (see Figure 1). The microscale
correlation time is a measure of the most rapid changes that occur in the
fluctuations on the radar Bragg scale. The time T is also called "coherence
time"™ or "time to independence" (e.g., ATLAS, 1964), since this is the time
after which the turbulent fluctuations at half the radar wavelength A become
statistically independent.

(2) The average persistency of a structure is given by the integral-scale
correlation time

T

T, = J p(1) dt (2)
0

where T is the length of the correlation function. The persistency T, is a

measure of the longest-lived coherence in structural behavior.

It can be shown that T, ~ M(4mo,), where oy is the rms deviation of the
velocity distribution. In a similar way, the integral-scale correlation time
or persistency Te can be expressed by a characteristic length L and a velocity
u, with which a reflecting structure is advected through the radar beam. We
find T ~ L/u, This assumption is based on the Taylor hypothesis that the time
scale for evolution of a structure of dimension L is so long that there is no
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Figure 1. Intensity correlation function p(t). The
scaling of the t axis is different for the lags
0s <1< 10s and 15 s < 1 < 150 s; p' is the
offset correlation at zero lag due to noise contri-
butions; 1, is the microscale correlation time,
and the area p'T, determines the integral-scale
correlation time Tg,.

significant change during its advection through the radar beam. The persistency
T. is large for a slowly changing discontinuity and for minor contributions due
to scattering, Cg 2 << C, 2 1f Cgc > Crz, the integral-scale correlation time
will approach the mlcroscale correlatlon time (T > LT ) In most realistic
conditions, scattering and reflection are observed .e., Cs2 v Crz. The
correlation function then indicates a Gaussian shape approximated by a parabola
near zero lag. Zero correlation is gradually approached for long time lags
because o contributions from reflection (e.g., Figure 1). The integrals

T T
I(t,) = f ep dt and I(Te) = f p dt - I(ty) yield a rough estimate of the

0

scattered and reflected contributions. We expect I(T.) " I(Te) if Cr2 ~ CSZ.

For T < T, (1) is essentially determined by turbulence scatter, whereas it is
determined by reflection for T > 1,. An estimate of the scattered contribution

can also be obtained by high pass filtering (f > Te—l) and an estimate of the

. . -1 : . .
reflected contribution by low pass filtering (f < Te ) of the intensity time
series.,

RASTOGI and ROTTGER (1982) used a high-pass and low-pass filter procedure
to separate the scattered from the reflected component, They defined a
specularity index R which is the ratio of the rms outputs from the low-pass and
the high-pass filters. This procedure of course needs an a priori definition of
the cutoff frequencies of these filters. If R > 1, the reflected component is
dominant; if R < 1, the scattered component is dominant.

Another most preferred way would be to evaluate the spectra as suggested by
Rottger (this volume, p. 112). As mentioned there, the scattered contribution is
the integral over the Gaussian background distribution, whereas the reflected
contribution is the integral over the remaining spikes which are assumed to be
caused by diffuse reflection.
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